Do Biological Constraints Impair Dendritic Computation?


Computations on the dendritic trees of neurons have important constraints. Voltage dependent conductances in dendrites are not similar to arbitrary direct-current generation, they are the basis for dendritic nonlinearities and they do not allow converting positive currents into negative currents. While it has been speculated that the dendritic tree of a neuron can be seen as a multi-layer neural network and it has been shown that such an architecture could be computationally strong, we do not know if that computational strength is preserved under these biological constraints. Here we simulate models of dendritic computation with and without these constraints. We find that dendritic model performance on interesting machine learning tasks is not hurt by these constraints but may benefit from them. Our results suggest that single real dendritic trees may be able to learn a surprisingly broad range of tasks.

Ilenna Jones
Ilenna Jones
Research Fellow

My research interests include neuronal biophysics, dendritic computation, and neuroscience for AI.